为ICU失误亮红灯,AI如何实施监控重症监护全流程

广告位API接口通信错误,查看德得广告获取帮助

当患者进入了重症监护病房,那么就等于将一切托付给了医生。然而重症监护室监控的指标众多,不同的患者需要关注的指标权重也各不相同,尽管医生护士全神贯注处理病人相关的事项,失误仍在所难免。

据数据显示,美国2005年ICU错误发生率高达1497次/每万人,其中严重威胁生命的占13%;平均每人每天发生1.7个医疗错误,每年平均有9.8万ICU患者死于医疗错误。不过,还有一个积极的数据显示,在这些医疗失误中,28%~84%都是可预防的,只是医院需要找到一个有效的途径进行预防。

国内情况也不容乐观。随着老龄化的到来,病人数量不断增加,而医生成长时间长,供求差额越来越大,专业医生资源严重不足。另一方面,目前很多疾病诊疗缺乏适用于国内人群的专业指南,均靠医生经验判断,而有经验的临床医生非常有限。

ICU的情况则更为严峻,对于医生而言,进入ICU的患者病情普遍多变复杂,综合数据维度多达236项,远超过了人力的控制范围,难以精准评估病情变化。对于患者而言,ICU的开销不菲,人均消耗医疗费用75673元(年产生医疗费用1000多亿元),可以说ICU是医院中最“烧钱”的科室。

针对当前医院ICU的痛点,地处杭州人工智能小镇的脉兴医疗以ICU医疗大数据为基础搭建了病情评估系统,用人工智能辅助预测病人病情发展趋势,并衍生出呼吸机智能管理系统、急性肾损伤(AKI)早期预警系统,用以为医生提供辅助预警与决策,提高患者的生存率与预后效果。目前脉兴医疗的发展模式通过数据结构化的积累,为ICU行业的AI赋能,力争成为ICU行业的"零氪科技"。

以ICU为核心,深入临床诊断系统细节

脉兴医疗聚焦于建立重症多参数智能医疗大数据平台,为医疗大数据平台以及AI产品研发提供数据源;并利用临床数据通过NLP(自然语言处理)、图像识别、预测建模等机器学习的方法,研发临床可用的医疗辅助决策系统,辅助医生对患者病情进行精准判断。

1

病情评估与死亡预测系统

脉兴医疗的核心产品病情评估系统的核心是一个基于MIMIC数据库建立的病情评估模型,能够实时分析临床数据,把与疾病最相关的参数按照权重展示给医生,并预测病情发展与死亡风险趋势,辅助医生运用自己的临床经验快速进行临床诊疗决策。脉兴自主研发的死亡预测模型对患者死亡结果的预测准确率达到94%,而在协和医院进行实例验证时准确率也到达了87%。

屏幕快照 2018-08-28 下午3.02.44.png

2

WeanDoc(人工智能搭建呼吸机智能管理系统)

在ICU科室,有50%以上的重症患者可能会使用到机械通气,而机械通气的呼吸机的参数调整与撤机时机的选择对临床医生的经验要求较高。WeanDoc可以在呼吸机使用初期,选择合适的模式,设置参数提供合理的呼吸支持去维持和改善病人的呼吸与生理情况,给治疗原发疾病延长宝贵的治疗时间。针对不同的病人,采用不同的方案设置潮气量(VT),呼气末正压(PEEP),吸入氧浓度(FiO2),以及呼吸频率(RR)。当病人病情得到好转,指导医生适当时候合理减少呼吸支持,让病人逐渐恢复自主呼吸,缩短使用时间,减少对呼吸机的依赖,提高疾病预后。

WeanDoc监控下的患者各项指标均受到系统不间断的看护,其感染风险、病人痛苦、医疗费用、呼吸机的使用时间均有显著的减少,而医生在WeanDoc的协助下也可减少失误,即便是发生参数设置方向的失误,也可即时纠正错误,避免严重影响,同时,这意味这医护经验较少的呼吸治疗师获得了一位24小时陪伴的老师,医院的人才缺口也会相应减少。

合作方是成功的关键因素之一

为了解脉兴医疗ICU预警产品的实际情况,动脉网记者来到了协和医院内科ICU(MICU),该项目是协和医院内科ICU主任杜斌教授牵头与脉兴医疗合作的,杜斌教授是亚太危重病医学协会(APACCM)主席,同时也是中国医师协会重症医学医师分会会场,在ICU行业内具有非常高的地位。

作为脉兴医疗的合作方,协和医院内科ICU副主任翁授谈到了如今数据库的痛点:“就数据而言,北京每个医院都有自己庞大的数据库,但其中很多数据库的数据是不完善、不规范的,是难以导出来进行临床研究的,所以我们要做的首先是要做一个标准数据库,但只是谈标准化是不行的,需要先有人来试水。”